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Abstract. Beyond day glow highlighters and psychedelic black light
posters, it has been estimated that fluorescence is a property exhibited
by 20% of objects. When a fluorescent material is illuminated with a
short wavelength light, it re-emits light at a longer wavelength isotrop-
ically in a similar manner as a Lambertian surface reflects light. This
hitherto neglected property opens the doors to using fluorescence to re-
construct 3D shape with some of the same techniques as for Lambertian
surfaces – even when the surface’s reflectance is highly non-Lambertian.
Thus, performing reconstruction using fluorescence has advantages over
purely Lambertian surfaces. Single image shape-from-shading and cal-
ibrated Lambertian photometric stereo can be applied to fluorescence
images to reveal 3D shape. When performing uncalibrated photometric
stereo, both fluorescence and reflectance can be used to recover Euclidean
shape and resolve the generalized bas relief ambiguity. Finally for ob-
jects that fluoresce in wavelengths distinct from their reflectance (such
as plants and vegetables), reconstructions do not suffer from problems
due to inter-reflections. We validate these claims through experiments.

Keywords: 3D Reconstruction, Photometric Stereo, Shape from Shad-
ing, Fluorescence, Subsurface Scattering.

1 Introduction

When a material fluoresces, it absorbs light at a shorter wavelength and emits
it at a longer wavelength. For example, when illuminated by blue light, Chloro-
phyll fluoresces red (Fig. 1). Minerals emit a wide variety of visible colors when
illuminated by ultraviolet (UV) light. While it has been reported that 20% of
materials fluoresce [1], most models of color and reflectance in computer vision
neglect fluorescence.

Radiometric methods for reconstructing shape such as single image shape-
from-shading, photometric stereo, and passive photometric stereo from motion
develop explicit models relating illumination, surface reflectance, and image ir-
radiance. Central to these methods is the bidirectional reflectance distribution
function (BRDF) which can be considered as being wavelength dependent. For
example, in classic photometric stereo of surfaces with arbitrary reflectance,

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part VII, LNCS 7578, pp. 292–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Shape from Fluorescence 293

Fig. 1. [Top] Chlorophyll-a excitation and emission spectra. The excitation peak is
at 430nm and the emission peak is at 685nm. Wavelengths at the green range are
not absorbed and thus reflected, giving the plants their prominent green color. [Bot-
tom] Spectral sensitivities of the RGB channels in a Canon 5DII camera. The excitation
spectrum has almost no overlap with the red camera channel. The yellow barrier filter
over the lens enables imaging of green fluorescence (such as Green Fluorescent Proteins)
without contamination of the excitation light. Although theoretically it seems that the
yellow filter is not necessary for red fluorescence imaging, in practice, the excitation
intensity is much stronger than the emission intensity, and so any leakage of longer
wavelength of light from the blue source would reflect and appear in the red channel.
The barrier filter reduces leakage and leads to correct exposure of the red channel.

reflectance maps are either derived from the BRDF for each light source direc-
tion [2] or measured from a reference object of the same material [3]. Under Lam-
bertian reflectance, the measured image irradiance is independent of the viewing
direction. Then, surface normals are readily estimated from three or more images
as the solution of a linear system of equations [2], and a spatially varying albedo
can also be estimated. In addition, many computer vision algorithms that rely
on the constant brightness assumption (e.g., optical flow, dense stereo matching,
space carving) implicitly or explicitly assume that surfaces are Lambertian. Un-
fortunately few materials are truly Lambertian except manufactured materials
like Spectralon, and so one must often contend with non-Lambertian surfaces
and this significantly complicates reconstruction compared to the simplicity and
robustness of methods for Lambertian surfaces.

Until now, fluorescent materials were mainly used in computer vision and
graphics to enhance visibility and contrast when imaging in scattering media [4].
The property that the fluorescence color is distinct from the illumination color
is used to optically filter out at the camera the wavelengths corresponding to the
illuminant while allowing the wavelengths of the fluorescence emission from the
object to pass. Fluorescence was also used to reconstruct transparent objects.
Ihrke et al. [5] added a fluorescent dye to water to enable reconstruction of
flow from a video sequence. Hullin et al. [6] immerse transparent objects in a
fluorescent solution to enable range scanning techniques.

Interestingly, fluorescent emissions are almost always isotropic [7], radiating
energy equally in all directions, albeit at a different wavelength than the inci-
dent illumination. Consequently, it has the same behavior as an ideal Lambertian
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surface. In this paper, we exploit this phenomenon to estimate shape from flu-
orescence in images. Contemporary with this paper, Sato et al. [8] presented
similar contributions.

2 Image Formation

2.1 Reflectance

For simplicity of development, we consider an object surface point to be illumi-
nated by a single light source from the incident direction in polar coordinates
(θi, φi) with an incident radiance Li(λ). The object is viewed by a camera from
the direction (θr, φr), also in polar coordinates. The amount of light reflected
from the object point towards the camera [9] is expressed by

Lr(λ) = Li(λ)F (λ, θ) cos θi , (1)

where F (λ, θ), is the BRDF at this object point, and θ = (θi, φi, θr, φr), are
incident and viewing directions in spherical angles relative to a local coordinate
system defined by the surface normal. The cos θi term is a foreshortening factor,
as the exposed surface area decreases as the angle between the surface normal
and illumination direction increases.

The intensity of a pixel in color channel c with sensitivity zc(λ) is

Ic = k(γ) cos θi

∫
Λ

zc(λ)Li(λ)F (λ, θ)dλ , (2)

where Λ is the range of visible wavelengths. Here k is the ratio between image
irradiance and scene radiance [10], which depends on the effective f-number,
lens transfer function, etc. In addition, k depends on γ, the angle between the
projected ray to the optical axis [10]. Most algorithms reconstructing shape
from illumination assume the camera is viewing all object points from the same
direction (orthographic projection), so that k(γ) becomes a constant, or estimate
k(γ) through calibration. Either way, from here on we assume the dependency
on γ was corrected and treat k as a constant.

Typical BRDFs can be divided into two types of reflections. A specular re-
flection is mirror-like where most of the incident light at the surface is reflected
and concentrated about the reflection angle θr = θi. On the other hand, a dif-
fuse surface reflects light towards a wide range of angles. An ideal Lambertian
surface reflects light uniformly towards all directions, and the BRDF is equal to
the surface albedo

F (λ, θ) = F (λ) . (3)

Plugging Eqs. (1,3) into Eq. (2) yields the image intensity for a Lambertian
surface

Ic = acL ·N , (4)
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Fig. 2. Common fluorescent objects. In each example, the color image on the left was
acquired under white light whereas the image on the right was acquired under blue
light with a yellow filter over the lens. (a) Plastic objects (as well as papers) often
fluoresce under a wide excitation spectrum. They are made fluorescent at the same
color they reflect to appear especially bright. The color of the “ice cream” on the right
is due to fluorescence; since the cone does not fluoresce and only reflects, it appears
black in the fluorescence image. (b) Green plants and vegetables contain Chlorophyll
that fluoresces red. The image on the right was taken with a camera with a removed
IR filter, for increased sensitivity for Chlorophyll fluorescence [15].

where L is a illumination direction scaled by the light source strength and N
is the unit surface normal. The term ac is the sensed color of the object in the
channel c, as a function of the albedo, light spectrum and the channel sensitivity

ac = k(γ)

∫
Λ

zc(λ)Li(λ)F (λ)dλ . (5)

Ideal Lambertian reflectance hardly exists in nature. Thus, there is a wide lit-
erature on models of non-Lambertian reflectance that aim to characterize either
very specific material classes with a few parameters or a wide range of mate-
rials with many parameters. Some of the prominent ones are Oren-Nayar [11],
Phong [12], Cook-Torrance [13] and Ashikmin-Shirley [14].

2.2 Fluorescence

Stokes fluorescence, the common observed type of fluorescence, is the re-emission
of photons having longer wavelengths than the absorbed photons [4]. Any fluo-
rescent molecule has two characteristic spectra. The excitation spectrum is the
relative efficiency of different wavelengths of the exciting radiation to cause flu-
orescence. The emission spectrum is the relative intensity of radiation emitted
at various wavelengths (example in Fig. 1). To image just the fluorescence, an
excitation filter is mounted on a light source, or a narrow band light source
such as a laser or LED is used. In addition, an emission filter is mounted on
the camera. These filters are designed to have sharp boundaries, and to have
negligible overlap in their transmittance spectra. Recently, Zhang and Sato [16]
proposed a method for separating reflectance and fluorescence by using two im-
ages illuminated by distinct colored light sources, that can have some overlap. In
microscopy, narrow band filters are used to image various fluorescent molecules,
that are later unmixed [17] to yield the separate emitted fluorescence signals.
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Fig. 3. Scattering effects in a fluorescent object: (a) Specular reflections from the
surface are concentrated in a specular lobe around the specular angle θr = θi and of-
ten resemble the illumination color; (b) Light that penetrates the surface undergoes
scattering and eventually part of it is reflected back to the viewer taking on the body
color. The shape of the diffuse BRDF, which includes ideal Lambertian reflectance,
varies among surfaces and depends on the surface roughness [11], among other factors;
(c) Fluorescence emission of particles is often isotropic, and thus the surface emis-
sion is close to be ideally Lambertian; (d) Differences in optical path length from the
fluorescence emission to the surface might harm isotropy due to absorption.

Fluorescence is more abundant in everyday life than is usually acknowledged,
and examples of fluorescent objects are shown1 in Fig. 2. Many papers and plas-
tics are made fluorescent to have a more striking color. Bleaching detergent is
fluorescent and as a result, white papers and many cloths fluoresce as well. In
nature, green fruits, vegetables and plants fluoresce due to Chlorophyll. This
photosynthetic pigment strongly absorbs blue and red irradiance and reflects
green. Part of the blue irradiance is converted to fluorescence in the red spec-
trum. Excitation and emission spectra of Chlorophyll are shown in Fig. 1. Corals
fluoresce in red and green as they contain both Chlorophyll and Green Fluores-
cent Proteins. While less significant in every day life because of atmospheric
attenuation, many objects fluoresce when excited by UV light. Many miner-
als fluoresce under UV in colors of red, orange, yellow, green, blue, violet, etc.
Porphyrins in the human skin fluoresce under UV and are used for diagnosing
dermatological conditions, while ”black light posters” are more entertaining. In
addition, some fluorescent materials emit light in the infrared.

Within the graphics community, Glassner [7] followed by Wilkie et al. [18]
rendered fluorescent objects as diffuse, and Hullin et al. [19] claim that they are
“weakly directional”. These works explain this observation by the fact that the
fluorescence emission does not originate from the surface, but from subsurface
processes. In addition, it is important to realize that even before the subsurface
scattering takes place, the angular distribution of fluorescence from particles it-
self was measured to be isotropic in most cases [20,21]. This isotropic emission
from the particles manifests as isotropic emission from the surface if the fluo-
rescent particles are uniformly spread in the object and are relatively close to
the surface. The reflectance and scattering processes are demonstrated in Fig. 3.
Incident light may specularly reflect off of the surface and the observed color
is often that of the illuminant (a). Diffuse reflectance may not be ideally Lam-

1 For better color quality, please view all the images in the paper on a computer screen.
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Fig. 4. Examination of the angular dependency of the fluorescent emission: (a,b) The
normalized intensity of several spray-painted paper sheets wrapped around a cylinder
is plotted as a function of incident angle θi, for two light source positions. The incident
angle was estimated using a spherical light probe. The specular reflection from the
glossy paint indicates the location of the specular peak. The non-ideal diffuse peaks
are shifted from the ideal Lambertian peak towards the specular direction. From all
the measured surfaces, the fluorescent surface is the closest to the ideal reflection.
Interestingly, the reflection from the cardboard is significantly less diffuse than that of
the matte paint; (c) Images of the four materials. The cylinders are adjacent for display
purposes, but the measurements were done separately to avoid inter-reflections.

bertian (b), and the fluorescence emission (c) is observed to be closer to ideal
Lambertian. For subsurface particles, differences in optical path length from the
fluorescence emission to the surface may manifest as a non-isotropic fluorescence
emission, due to absorption [22] of the object material (d), especially in wider
viewing angles. This means that not all fluorescence emissions are ideally Lam-
bertian throughout the entire viewing range. Characterizing the nature of these
cases requires future work. Here, following the above analysis, in the next section
we provide an empirical demonstration of fluorescent emission that follows Lam-
berts law, and in the rest of the paper we demonstrate how to use this insight
for shape estimation.

3 Angular Dependency of Fluorescent Emission

In this section we verify the claim that the fluorescence emission is well ap-
proximated by an ideal Lambertian model through a simple experiment. We
image a cylinder, illuminated with a distant collimated light source, such that
the light source direction and strength is uniform across the cylinder. The cylin-
der provides imaging of all incident directions in a single image. The light source
direction is determined using a light probe (mirrored sphere) in the scene.
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Fig. 5. Shape reconstructions of a sphere spray painted with green fluorescent paint,
using reflectance and fluorescence channels. In both setups, the green channel is used.
(a,b) Reconstruction using shape from shading. The reconstruction from reflectance
has a clear bump from specularities. In the reconstruction from fluorescence, the recon-
struction is not ideal but closely resembles the shape of a sphere. (c,d) Reconstruction
by photometric stereo. In the reconstruction from reflectance, for each pixel, we use
the 3 frames that are the least bright in this pixel, to reduce the effect of the specular
reflection. Still, the reconstruction from fluorescence is almost ideal, whereas the re-
construction from reflectance suffers from its non-Lambertian nature. Note that both
images in (b,d) appear very diffuse. (e) Cross sections of the different reconstructions.
Values in parenthesis depict the mean error in degrees of the normal angles in each
reconstruction.

To compare reflectance properties, we spray-painted paper sheets with several
types of paint: matte, glossy, and fluorescent. These were imaged under a few
light source directions. Fig. 4 depicts the intensity plots as a function of θi for
two distinct light source positions in addition to the expected ideal Lambertian.
The normal direction at each pixel is obtained from its position on the cylinder
and the known radius of the cylinder. Measurements along lines with constant
surface were averaged to remove noise, and the brightness was normalized to
have a consistent maximum intensity. At all measured light source directions,
the fluorescent surface is closer to the ideal reflection than the other surfaces.

In all experiments reported in this paper we use raw images acquired either
with a Canon 1D mark IV or with a Canon 5DII illuminated with a Lowel pro-
light tungsten halogen light source. The reflectance images were imaged with this
setup as-is and all the fluorescence images were imaged using a blue filter on the
light source and a yellow filter mounted on the lens acquired from NightSea LLC.
For Chlorophyll fluorescence images, we use a Canon 5DII with a removed IR
filter, for increased sensitivity for Chlorophyll fluorescence [15].

4 Shape from Shading

Eq. (4) is used in various methods for reconstructing 3D shape as it provides a
simple relation between image intensity and object normals, provided the surface
is indeed ideally Lambertian and the light source is distant. In shape from shad-
ing methods, a single image is used to estimate the shape under the assumption
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of constant albedo [23]. A unit normal at each pixel is defined by two unknowns,
and Eq. (4) provides a single constraint. Then, various additional constraints,
such as integrability and smoothness are applied to obtain a solution. There is
also a bulk of literature on numerical methods for integrating the normals into a
smooth surface [23,24]. The majority of the existing methods assume Lambertian
reflectance and even then it is commonly acknowledged that results are usually
unsatisfactory. A few methods consider non-Lambertian reflectance models, that
are known a-priori, e.g. [25].

Here we show that the Lambertian-like fluorescence emission is an ideal input
to shape from shading. We imaged a sphere spray-painted with green fluorescent
paint. In each case (reflectance and fluorescence) the green image channel is the
input to shape from shading. The reconstruction was performed using code based
on [26], and the recovered shapes are shown in Fig. 5. The reflectance suffers
from the specular reflection, whereas in the reconstruction from fluorescence, the
reconstruction is not ideal but very closely resembles the shape of a sphere.

5 Calibrated Photometric Stereo

As stated in the previous section, shape from a single image usually produces
unsatisfiable results due to its under-determined nature and the required con-
stant albedo assumption. Therefore, in photometric stereo methods at least three
images are taken [2], in order to have a fully determined set of equations from
the form of Eq. (4). The problem can be cast as a matrix equation, where for
each pixel

Ik×1 = Sk×3N3×1 . (6)

Here S is a k×3 matrix, representing k distinct light source directions normalized
by their intensity. The pixel values under each light source are stacked in Ik×1.
In the calibrated case, the light source directions S are known and thus N can
be solved for directly from Eq. (6) given at least three linearly independent light
source locations.

The majority of photometric stereo methods assumes Lambertian surfaces,
while some works assume a different known reflectance function, explicit or
parametric, e.g. [27]. There are also attempts to estimate spatially varying
BRDFs [28]. Considerable effort is given to remove specularities in the images,
usually assuming dichromatic BRDFs [29,30].

Here, we show how the fluorescence signal provides an ideal input to Eq. (6)
and alleviates the need for more complex methods. In Fig. 5 we show the result
of photometric stereo on a sphere spray painted with green fluorescent spray. In
the reconstruction from reflectance, we tried two methods to reduce the effect of
the non-Lambertian reflectance. In one, for each object point we used only the
three frames where the corresponding pixel was the least bright. In the second,
we manually thresholded the brightest areas, and only use the non-thresholded
frames for each object point. A normal pointing in the z direction was assigned
to object points that did not have at least three input frames after thresholding.
Still, the reconstruction from fluorescence is much closer to the ground truth.
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fluorescencereflectance

Fig. 6. 3D reconstruction using photometric stereo applied to a fluorescent pink plastic
bottle (top) and to a (real) green bell pepper (bottom). These objects fluoresce as-
is and were not painted. [Left] The reflectance images have clear specularities that
harm the reconstruction. [Right] The fluorescence images are very diffuse and thus the
reconstruction based on them does not suffer from these problems. For all objects the
fluorescence image was taken from the red camera channel, and the reflectance image
was from the blue channel. Seven images were used to reconstruct the bottle while nine
were used for the pepper.

The cross sections of the different reconstructions and the mean error of the
reconstructed normal angles are depicted in Fig 5(e).

Reconstruction of more complex objects is shown in Fig. 6. We show recon-
struction for a fluorescent plastic bottle (top) and for a (real) green bell pepper
(bottom). In addition, Fig. 7 shows another reconstruction of a fluorescent toy
squirt gun. All objects fluoresce as-is and were not painted (see Sec. 3). In all
cases the reflectance image (left) has clear specularities that harm the recon-
struction. The fluorescence images (right) appear very diffuse and indeed the
reconstruction based on them does not suffer from problems common to non-
ideal diffuse surfaces. For all objects the fluorescence image is taken from the red
camera channel, and the reflectance is from the blue channel. The integration
part in the reconstruction uses the method in [31].

6 Uncalibrated Photometric Stereo

The input to uncalibrated photometric stereo is a set of images of an object
in fixed pose under unknown lighting conditions. i.e., no information about the
light source strength or direction is needed [32,33]. The basic equation describing
the problem is then

Ik×j = Sk×3N3×j , (7)

where j is the number of pixels in the image. The unknown light source direc-
tions S are considered uniform for all j pixels in the image. Image intensity
of all pixels under all light sources Ik×j is used as an input, to simultaneously
estimate S and the normal directions at every pixel, N3×j. When the object
is Lambertian and assuming only local reflectance, Eq. (7) can be solved using
SVD and applying integrability constraints up to a generalized bas relief (GBR)
tranformation [33,34] in the form
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Fig. 7. (a,b) Calibrated photometric stereo from fluorescence, demonstrated on a flu-
orescent orange toy squirt gun, using 12 images. The fluorescence signal is diffuse,
providing a 3D reconstruction that does not suffer from bumps due to specularities.
(c-e) Here we show how specular pixels from the reflectance image (originally not used
for reconstruction) can be used to resolve GBR ambiguity in uncalibrated photometric
stereo from the fluorescence channel. (c) The solution for the uncalibrated case, based
on [33], using the input images used in (b). The shape of the squirt gun is apparent, but
skewed with a GBR. Then, specular pixels are chosen (marked by black spheres). These
pixels imply constraints that allow recovery of the correct GBR tranformation, follow-
ing Eq. (9). The successfully transformed reconstruction is shown in (d). In (e) two
examples of the actual input images (both reflectance and fluorescence) are shown and
the specularity location is marked. Note that the reflection channel is used solely for
locating the specularity while surface is densely reconstructed from the more stable
fluorescence channel which does not exhibit specularities at these (or any) pixels.

G =

⎛
⎝ 1 0 0

0 1 0
μ ν τ

⎞
⎠ , (8)

where μ, ν and τ are the three degrees of freedom of the tranformation.
For strictly Lambertian surfaces, inter-reflections in concave regions can re-

solve the GBR [35] as can heuristics like minimization of the entropy of albedo [36].
However, both constraints are not always effective. Alternatively, the GBR can
be resolved using isotropy together with Helmholtz reciprocity [37]. This method
can only be accomplished when the Lambertian component of reflectance can
be separated from the specular component (e.g., using polarization [38] or the
SUV color space under the dichromatic reflectance model [39]).

Here, we offer a method to resolve the GBR in color images when the fluores-
cence is in one color channel and other color channels contain reflectance images
of a specular surface. The strategy is simple. Because the emitted radiance due to
fluorescence behaves like a Lambertian surface, the surface can be reconstructed
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up to a GBR tranformation from the fluorescence channel of multiple images
under unknown lighting using the method of Yuille and Snow [33]. The GBR
can then be resolved from the specularities detected in the reflectance channel
using the method of Drbohlav and Chaniler [40]. This method uses normals from
at least two specular points to impose constraints on the reconstruction of the
form

v = 2(n · l)n− l , (9)

where v is the viewing direction, n is the unknown normal at the specular point
and l is the unknown light source direction at the specific image containing
the specular point. The constraint in Eq. (9) is imposed on the solution of the
uncalibrated step [33] to estimate the correct GBR tranformation.

In [40], the normals reconstructed from the specular pixels in the reflectance
image are actually used in Eq. (9) to impose the constraint for surface recon-
struction. Thus, they are prone to errors and to an unstable reconstruction. As
opposed to that, in our case we have a clear advantage as the normals in the
uncalibrated solution are obtained from the Lambertian fluorescence channel,
and the reflectance channel is used solely to locate the specular pixels. We show
an example for this method in Fig. 7(c-e). The uncalibrated case is solved up to
a GBR ambiguity, and then the tranformation is estimated based on specular-
ities. In our experience, this method sometimes actually produces results that
are better than the calibrated results due to better accuracies in estimating the
light source directions.

7 Mutual Illumination in Reconstruction

Nearly all radiometric methods for shape reconstruction (shape-from-shading,
photometric stereo) are based on local illumination models wherein the image
irradiance is a function of the direct illumination from the light source onto an
imaged surface patch and the patch properties. Unless methods to separate local
and global illumination [41] are applied, the inter-reflections of light from other
surfaces in the scene onto the patch are neglected and left unmodeled. How-
ever, when rendering scenes in computer graphics, global illumination methods
achieve their realism precisely because they account for inter-reflections. Forsyth
and Zisserman showed that the image intensity of a dihedral (where two planar
faces meet and form a concavity) becomes brighter closer to the corner due to
mutual illumination, and the increase of brightness is related to the albedos of
the two faces [42]. When performing reconstruction using shape-from-shading or
photometric stereo, this increased brightness results in shallower reconstructed
concavities than the true depth. Nayar et. al. [43] called this the pseudo surface,
and introduced an iterative method for estimating the true surface from the
pseudo surface by estimating an inter-reflection kernel at each step.

Consider a simple concavity illuminated solely by wavelengths within its flu-
orescence excitation spectrum. Some of the incident light will reflect from the
surface according to its BRDF, and some amount will excite fluorescence that
will be emitted according to the material’s emission spectrum. In general, the
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Fig. 8. To demonstrate how fluorescence helps avoid mutual illumination, we covered
a V-shaped cardboard with leaves. (a,b) The reflectance and the fluorescence images
of the covered cardboard; (c) The shape was reconstructed using calibrated photo-
metric stereo for both the reflectance and fluorescence channels. The reconstructed
depth (at a certain cross section) is plotted for the reflectance and fluorescence im-
ages. While the reconstruction from the reflectance channel shows classical bending of
the corner (pseudo surface) as described in [43], the reconstruction from the fluores-
cence channel maintains sharp edges clearly demonstrating the reduction of the effect
of inter-reflections.

reflected light from the fluorescence emission can interreflect within the concav-
ity. However, when the material does not reflect light at the wavelengths of the
fluorescence emission, there will not be any subsequent interreflections of the
fluorescence emissions. Consequently, reconstruction methods that only assume
local Lambertian reflectance will be effective for images of such materials.

Contrary to [8], we found that most artificial fluorescent objects and materials
reflect the color they fluoresce, as they are made fluorescent to appear brighter
than they are, in the same color. However, many natural objects such as leaves,
vegetables and fruits, fluoresce at different wavelengths than they reflect. For
example, green leaves reflect green light but absorb red and blue light. When
lit by blue light, the Chlorophyll in the leaves will fluoresce red (Fig. 1). Be-
cause the leaf absorbs red light, we do not expect appreciable brightening due to
inter-reflections. Consequently, when performing reconstruction, local illumina-
tion models will be adequate to correctly estimate the depth, and methods such
as [41,43] should be unnecessary.

To demonstrate this claim on a simple case, we created a concave dihedral
(V-shaped) out of cardboard and glued leaves to it, such that it is covered
by the leaves. Using the reflectance and fluorescence channels separately, the
shape was reconstructed using calibrated photometric stereo (example images
shown in Fig. 8a,b, total images was 10). To clearly demonstrate the effect, we
plot a cross section of the reconstructed height for the two channels, (Fig. 8c).
Whereas the reconstruction from the fluorescence channel shows a sharp corner,
the reconstruction from the reflectance channel is shallower and the smooth
rounding of the corner (pseudo surface) is similar to what is described in [43].

8 Summary

Imaging fluorescence through inexpensive off-the-shelf filters opens an enchant-
ing world of glowing objects and objects that alter their color appearance. It
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is surprising to discover that many every day objects fluoresce in the visible
spectrum under UV or blue light and therefore can be imaged with conven-
tional cameras. In this paper we showed the benefit of using fluorescence for
3D reconstruction methods since fluorescence emissions are often isotropic much
like ideal Lambertian reflectance. This insight can be used, for example, for 3D
reconstruction of fluorescent corals underwater, where texture correspondences
are sometimes problematic, given the water optical properties are taken into
account. We showed that there is an advantage of imaging a fluorescent object
over a matte object, as specularities from the reflectance channel can provide
additional information regarding light source directions relative to the object. In
addition, we showed how in some cases fluorescence can avoid mutual illumina-
tion problems.

In some cases, the fluorescence emission might not be ideally Lambertian
due to differences in subsurface absorption. The characterization of such cases
requires more measurements of different fluorescent materials. When the emitted
radiance due to fluorescence is isotropic, other computer vision methods that rely
on the constant brightness assumption such as binocular stereopsis, multi view
reconstruction, and optical flow estimation can be applied to fluorescence images.
However, fluorescence typically does not exhibit the same type of spatial/texture
variation as would be found with reflectance texture, and this might provide an
alternate set of challenges.
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