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Abstract

Imaging through dynamic refractive media, such as look-
ing into turbulent water, or through hot air, is challenging
since light rays are bent by unknown amounts leading to
complex geometric distortions. Inverting these distortions
and recovering high quality images is an inherently ill-posed
problem, leading previous works to require extra information
such as high frame-rate video or a template image, which
limits their applicability in practice. This paper proposes
training a deep convolution neural network to undistort dy-
namic refractive effects using only a single image. The neural
network is able to solve this ill-posed problem by learning im-
age priors as well as distortion priors. Our network consists
of two parts, a warping net to remove geometric distortion
and a color predictor net to further refine the restoration.
Adversarial loss is used to achieve better visual quality and
help the network hallucinate missing and blurred informa-
tion. To train our network, we collect a large training set
of images distorted by a turbulent water surface. Unlike
prior works on water undistortion, our method is trained
end-to-end, only requires a single image and does not use
a ground truth template at test time. Experiments show that
by exploiting the structure of the problem, our network out-
performs state-of-the-art deep image to image translation.

1. Introduction
Consider the imaging scenario in which the camera views

a scene through a refractive medium, in which the interface
is constantly changing. Two common examples of this occur
when looking from air into water with a turbulent surface
and imaging through a medium with temperature variations
that gives rise to atmospheric refraction or mirages. In all
such cases, the scene appears distorted due to the bending of
light as it passes through the refractive interface.

Removing such distortions from a single image is chal-
lenging since the shape of the interface is not known a priori
and must be estimated simultaneously with the latent image.
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Figure 1. Top: Input and our result on a scene captured in the wild.
Note the distortions to the ladder on the top of the fire truck and the
landing skids of the helicopter. Bottom: Our laboratory setup for
generating large amounts of training data.

The problem is similar to blind deconvolution, but the ker-
nel is spatially varying and can be much larger than what
is typically considered in image deblurring. As such, most
previous works [6, 7, 9, 27] assume an input video instead
of a single frame.

In contrast, we attempt to solve the single image undis-
tortion problem by building upon the recent success of deep
convolutional neural networks at solving image-to-image
translations [13]. Our hypothesis is that the space of natural
images as well as the space of natural refractive distortions
is structured enough that a neural network can learn a reason-
able mapping between distorted input images and undistorted
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output images. We demonstrate that it is in fact the case by
training a network end-to-end for our task.

Although, in principle, a purely convolutional and de-
convolutional network could learn the complex mapping
between distorted images and undistorted images directly,
we find training such a network to be difficult. Instead we
propose a two-step framework to address the nature of im-
ages observed through dynamic refraction. The first step
outputs a warping field and applies it to the input image to
undistort it. Note that we can apply the warping in a differ-
entiable manner by using bilinear sampling. While such a
warping network is able to remove many of the geometric
distortions, there is often information lost during image for-
mation due to blurring and holes induced by the complex
shape of the interface. To correct for this, we train another
color network that takes the output of the warp net and hal-
lucinates plausible details. Both the networks are trained
together in an end-to-end manner. As has been observed
in prior work [19], when the network is trained solely with
the L1 or L2 loss, the output images are blurry. To combat
this, our network is also trained with adversarial [10] and
perceptual losses [19].

To train the network we need a large number of input
distorted and ground truth image pairs. Unlike previous
works that use computer graphics simulations to generate
voluminous data, we find that our application demands a
narrower domain gap between training and testing. Since no
such dataset with real images currently exists, we construct a
new large scale dataset by displaying ImageNet images on a
monitor placed under a glass tank full of water and capturing
images from above. We demonstrate that by training our
network on this dataset we are able to generalize to images
of real objects, even in completely different environments
(see Fig 1). Our method consistently produces high quality
undistorted images from a single distorted input, in contrast
to the recent end-to-end learning framework of [14]. Our
dataset and code will be publicly released to stimulate further
research towards this challenging problem.

In summary, we make the following contributions: 1)
propose using deep learning to solve the as yet unattempted
problem of single image distortion removal, 2) design a
new special network architecture that takes advantage of the
physical image distortion model, 3) construct a large scale
image dataset that can be used to train our network, 4) show
high quality results on real objects imaged through diverse
distortions in various settings.

2. Related Work
Imaging Through Refractive Distortions: Water distor-
tion removal is an extremely challenging problem due to its
inherent ill-posed nature. To the best of our knowledge, all
previous methods assume additional information beyond a
single input image.

One common approach is to use a video sequence of
a still scene under varying distortions. Murase et al. [23]
proposes the common assumption that the water surface slant
is Gaussian with mean zero over time. This means that the
temporal average of frames will give a reasonable undistorted
image. This suggests the method known as lucky imaging
in which the image with the least distortion is chosen as
the restoration. Going beyond this, Efros et al. [9] divide
the images into patches and choose the best patch for each
location across the video sequence and stitch the results into
the final result. Donate et al. [6, 7] improve this method
by further removing the motion blur and by using k-means
clustering to reduce the number of patches being considered
for the patch selection process. Wen et al. [31] combines
lucky imaging with Fourier domain spectral analysis for
better reconstruction. Tian et al. [27] propose a compact
spatial distortion model based on the wave equation and use
it to design an image restoration technique specifically for
water distortion. Periodicity and smoothness constraints for
water surfaces are used as regularization to help avoid poor
local minima. Oreifej et al. [24] propose an iterative two
stage restoration in which the first stage robustly aligns the
frames to the temporal mean image and the second stage
removes sparse noise using a low rank assumption.

Another branch of works focuses on recovering the shape
of the water surface from a distorted and non-distorted image
pair. Note that this is a slightly different problem than ours
as the desired non-distorted image is assumed known. In
this case the problem can be posed as an image alignment
problem seeking the warping field that warps the distorted
image to the undistorted one. Tian et al. [28] develop a data-
driven gradient descent algorithm that iteratively recovers
the warping field. They first generate a large set of training
samples with known distortions. Then in each iteration, they
find the nearest neighbor of the current distorted image in
the training set and use its distortion parameters to warp the
distorted image back to the template. Tian et al. [29] fur-
ther develop a hierarchical structure which needs much less
training samples and can consider global and local distortion
simultaneously. Zhang et al. [35] uses defocus and distortion
cues from a video along with a non-distorted template to
solve for both the water surface and object depth.

Alterman et al. [2] considers the problem of multi-view
stereo through a dynamic refractive interface. They use mul-
tiple cameras along a wide baseline to observe a scene un-
der uncorrelated distortions and recover sparse point clouds.
Xue et al. [32] estimate flow velocity in a dynamic refractive
medium using optical flow.

CNNs for Estimating Transformations: Siamese net-
works have been used for estimating rigid or non-rigid trans-
formations between two images for tasks such as motion
estimation or matching [1, 17]. In contrast, we use a single



image for undistortion, since the ground truth target image
is not known at test time. The spatial transformer has been
proposed as a trainable module in classification networks by
Jaderberg et al. [15] to estimate parametric transformations,
with a convolutional variant used for correspondence learn-
ing in [3]. Non-parametric transformations in the form of
a shape basis representation are estimated in [33] to handle
articulations. In contrast to those works, we address the
problem of distortions induced by waves on the surface of
water, which is not a parametric transformation and often
too complex to be representable by a small number of bases.

Image-to-Image Deep Learning: Although deep learn-
ing first saw great success on the problem of image clas-
sification [18], it has also proven very successful on im-
age to image problems such as semantic segmentation [21].
Recently many works have trained convolutional/ deconvo-
lutional networks to perform a variety of image to image
problems, such as image super-resolution [8, 19], image col-
orization [5, 4, 36, 12], image inpainting [25], image style
transfer [20], image manipulation guided by user constraints
[37] and image de-raining [34].

Many of these works rely on generative adversarial net-
works (GANs), which have recently shown promise at the
task of natural image generation [10]. A GAN consists of
two networks: a generator, whose task is to generate real-
istic looking images, and a discriminator, whose job is to
label images from the generator as fake and real images as
real. These two networks are trained together forcing the
generator to learn to produce realistic images. Despite recent
work on improving the training of GANs [26], the result-
ing images are not yet of high quality. However, when the
generator is conditioned on an input image and can can be
trained with a traditional loss, such as L1 or L2, in addition
to the adversarial loss, the results are much more impres-
sive [19, 14]. The adversarial loss drives the results away
from the mean/median image that is learned from solely the
L2/L1 loss, which allows the network to learn to predict
more detailed, less blurry, realistic looking images.

Isola et al. [14] build upon these to propose a general
framework for image-to-image translation problems that
involves training a convolutional/ deconvolutional network
on input and output image pairs using a combination of L1
pixel loss and an adversarial loss. Although this can be used
to solve our problem in principle, our experiments indicate
that their general purpose net has difficulty in learning to
correct geometric distortions in practice.

3. Model
We train a deep neural network to take in images distorted

by a dynamic refractive interface and output the undistorted
image that would have been observed without an interface.
Although, in theory, a purely convolutional/ deconvolutional

architecture such as [14] could learn this complex mapping,
we find it does not perform well in practice (see Figure
4). Unlike most previous image-to-image networks [14, 19,
34], we draw inspiration from the physical image formation
model to help simplify the problem for the network.

Let I(x) be the image that would have been observed
without any refractive distortion and W̃(x) be a 2D warping
field that corresponds to the distortion induced by the refrac-
tive interface. When the height of the variations of the water
are small compared to the depth of the scene and the height
of the camera, W̃ is linearly related to the gradient of the
surface height∇Z(x). Then the observed, distorted image
J(x) is given by

J(x) = I(x+ W̃(x)) (1)

Unfortunately, inverting 1 is difficult not only since both
I(x) and W̃ are unknown, but also because the mapping
need not be one-to-one.

Inspired by this, we train our network to predict the in-
verse warping field W(x) such that

I(x) = J(x+W(x)) (2)

Thus, given a predicted warping field W(x) from our net-
work, we can easily compute the desired undistorted image
by interpolation of the input image. We use bilinear inter-
polation since it is differentiable, which allows end-to-end
training. Here we have taken advantage of the fact that we
know the mapping between input and output images to be
a warp. By performing the warping explicitly through in-
terpolation, we do not require the network to learn to do it
through convolutions.

However as stated above, the forward warping need not be
one-to-one and thus information may be lost in the distorted
image J(x). This is often observed as blurring, double
images and singularities. To handle this, we train a second
image-to-image network, which we call the color network,
that takes the unwarped image J(x+W(x)) and outputs our
final image. The goal of this second network is to add back
details lost during the warping and correct other artifacts
that the warping network could not handle (partly due to its
limited modeling).

Let our warping network be denoted as Wθ and our color
network as Cφ, where θ and φ are the learnable parame-
ters of each network, respectively. Then our full generator
network is given by

Gθφ(J(x),x) = Cφ(J(x+Wθ(J(x)),x), (3)

which we train end-to-end.

3.1. Network Architecture

The architectures of our warping network Wθ and color
network Cφ are inspired by Ledig et al. [19] and Isola et



Figure 2. The network structure of our generator. For each convolutional layer, k represents the kernel size, n represents the number of
feature maps, s represents the stride and p represents the padding size. Here, d represents the transpose convolutional layer.

al. [14], but we make a few important changes to better
suit our problem. Both our networks have the same general
structure with only a few differences, which we now discuss
in detail.

Both nets consist of three stride 2, size 4 convolution
layers, followed by eight residual blocks, followed by three
stride 2, size 4 deconvolution layers (see Figure 2). The out-
put feature dimensions are 32, 64, 128, 64, 32, x, where x is
a two channel warping field for the warp net and a 3 channel
RGB image for the color net. Each residual block consists
of two stride 1, size 3, dim 128 convolution layers followed
by an additive skip connection, following the design of [11].
We also add concatenation skip connections between corre-
sponding convolution and deconvolution layers of the color
net to help maintain fine details in the output image. This is
not necessary for the warp net. Note that a similar, but much
shallower, two stage network structure was proposed in [16]
for the problem of lightfield interpolation where the warps
are small.

We find that normalization plays an important role in
generalizing from our training set to real objects that have
somewhat different color statistics (see Section 4). With
standard batch normalization, we achieve the best results
(in terms of L1 loss) on the training set, but observe bright
blob artifacts when testing on real objects. This is due to
the network over fitting to the color statistics of our train-
ing images. The problem is not alleviated solely by using

instance normalization as suggested by [30] because unlike
them, we expect the network to preserve the brightness and
contrast of the input image. To address this, we use instance
normalization throughout our network, but save the mean
and variance extracted from the input layer and use it to scale
and shift the output.

3.2. Training Objective

We train our network by minimizing the L1 loss in pixel
space

Lcon =
∑
x

|I(x)−Gθφ(J(x),x)| (4)

which we call the content loss. However, the L1 loss alone
trains the network to predict the median image, which is
often blurry and lacking in high frequency details. As in
[14, 19] we also train our network with an adversarial loss to
help encourage the predicted images to reside on the natural
image manifold. This forces the network to produce sharp
images with more fine details, and even hallucinate missing
information from large distortions.

We train an additional discriminator networkDγ to distin-
guish between undistorted images from the generator and the
natural non-distorted images, while the generator is trained
to fool the discriminator. During the training process, the dis-
criminator and generator are trained in an alternating manner
to solve the min-max problem

min
θ,φ

max
γ

E[logDγ(I)] + E[log(1−Dγ(Gθφ(J)) )] (5)



For more stable training we use the Least Squares GAN
objective [22]

Ladv = −(Dγ(Gθφ(J))− 1)2 (6)

The discriminator architecture follows the guidelines pro-
posed in [26]. We use 7 convolutional layers with ker-
nel size 4 and stride 2 and increasing feature dimension
(32,64,128,256,512,512,1). Each convolution except the last
is followed by batch normalization and LeakyReLU activa-
tions. The last output is followed by a sigmoid activation.
We also try the PatchGAN [13] by decreasing the receptive
field of discriminator to 70× 70 and apply it through the im-
age convolutionally. However, in our case, using PatchGAN
does not improve the image quality.

Although the adversarial loss encourages more details,
it also introduces some artifacts due to the unstable nature
of GAN training. To combat this we follow [19] and add a
perceptual loss defined by

Lper =
∑
x

|ψ(I(x))− ψ(Gθφ(J(x),x))|, (7)

where ψ is the output of an intermediate feature layer of a
pretrained convolutional neural net. In our implementation
we use the output of the conv4 3 layer of VGG.

Our final loss function is a weighted combination of the
3 losses

L = Lcon + λadvLadv + λperLper (8)

Training Detail: We largely follow the training scheme
in [19] and [26]. We first train the network with L1 loss
alone from scratch and then fine tune the network adding
adversarial loss and perceptual loss. The weight for adversar-
ial loss and perceptual loss are 0.0005 and 0.3 respectively.
Compared with [19], our weight for adversarial loss and
perceptual loss is much lower and we do not remove L1 loss
when fine tuning the network. This is because we observe
that L1 loss is important for our problem and if we remove
L1 loss the network will not generate reasonable results.
When training with L1 loss, we set the learning rate to be
0.001 and divide it by 10 after 15000 iterations. We train
the network for 30,000 iterations with a batch size of 32.
Then we fine tune the network adding perceptual loss and
adversarial loss for 2000 iterations with learning rate 0.0002
and batch size 16.

4. Training Data
To train our deep network, we need a large training set.

However, collecting a large number of images distorted by
a water surface along with the corresponding non-distorted
ground truth is challenging. There are no such existing large

scale datasets. Tian et al. [27] provide a small dataset but
that is not nearly enough to train a deep network.

Synthetic data is a natural option, but we found generating
diverse enough water surfaces to be challenging. We tried
using Gaussian Processes and the wave equation as in [27],
as well as perturbing the surface with random Gaussian
shaped drops. In each case, the network quickly over fit to
the particular distribution of water surfaces generated and
failed to generalize to real images. Creating diverse synthetic
water surfaces is an interesting direction for future work.

Instead, we choose to construct a large dataset of distorted
and non-distorted image pairs by capturing images of Ima-
geNet images displayed under a water surface (see Figure 1).
We place a computer monitor under a glass tank, which is
filled with approximately 13cm water. The water is kept in
motion using a small agitating pump. A Cannon 5D Mark
IV is placed approximately 1.5m above the tank. Images are
resampled using bilinear interpolation to fill the available
screen space in the tank, after which the captured image is
tightly cropped to its original shape and downsampled to
its original size. The camera is set to f/1.2, ISO100, with
exposure time of 1/320s. The camera is manually focused
just beyond the monitor as this slight defocus removes the
Moiré pattern observed in properly focused images.

The process of displaying and recapturing the images
changes the color space slightly due to nonlinear gamma
curves and pixel sensitivity. To handle this, we pretrain a
small color correction net that consists of 6 convolutional
layers with receptive fields of size 1 to minimize the L1 dis-
tance between the captured image and the original ImageNet
image. This mostly solves the problem, however we find that
proper normalization in the net (as described in Section 3.1)
is important for generalization to real objects. We collect
324,452 images from all 1000 ImageNet categories. We
withhold 5 images from each category to form a validation
set of 5000 images.

We note that creating a large real image dataset for 3D
underwater scenes in the wild is extremely difficult. The
intent of our training data collection is to easily generate
sufficient volume in conditional similar but not identical to
the application scenario. The choice of using flat images is a
deliberate one, sacrificing realism for quantity. This is in line
with several studies that use simulations for generating train-
ing data. Our laboratory setup similarly allows collecting
large-scale data, but with reduced domain gap. Our experi-
ments demonstrate generalization from the laboratory tank
setup with flat images to real images of non-flat objects and
in wild settings.

5. Results
We show results on our validation set captured by display-

ing ImageNet images on a monitor under a water surface,
as well as images of real objects underwater. To demon-



Figure 3. Qualitative results for ablative study on ImageNet validation test set. From left to right: input image, color net with L1 loss,
warp+color net with L1 loss, warp+color net with L1+Adv+Per losses, ground truth. We observe that estimating the undistortion with the
warp net significantly improves the geometry, while the adversarial loss allows better perceptual alignment to ground truth.

Method L1 MSE PSNR SSIM
colorNet 20.318 998.631 18.841 0.470
warpNet 20.140 961.978 19.035 0.490

fullNet(L1) 19.091 902.032 19.306 0.502
fullNet(adv+L1+per) 19.109 894.178 19.348 0.499

Table 1. Quantitative results for the ImageNet validation set. The
network is trained with L1 loss, whereby we observe that L1 error
reduces for the full network compared to warp or color net alone.
As expected, the adversarial loss increases the L1 error, but allows
for better appearance. For completion, we also show other metrics
not directly related to the training, such as MSE, PSNR and SSIM.

strate generalization ability, the real objects are imaged in a
different larger tank, as well as outdoors in a fountain pool.

In Figure 3, we show our results and an ablation study on

the ImageNet validation set. In addition to the input image
(column 1), our result (column 4) and ground truth (column
5), we also show two ablation results. The first is our color
net alone trained with only the L1 loss (column 2). The
second is our full generator architecture but trained with
only the L1 loss (column 3). The five rows show the outputs
for different input images.

We observe that the color net alone struggles to remove
the large geometric distortions. Adding the warp net that
accounts for the structure of the problem results in signifi-
cantly better geometric undistortion, while also producing
good colors. Next, adding the adversarial and perceptual
loss has the effect of recovering sharp detailed images that
are perceptually closer to the ground truth.

Figure 4 shows our results on real objects as well as a



Figure 4. Results on real objects demonstrating generalization. (Rows 1 and 2) From left to right: input image in a larger tank, result of Isola
et al. [14], our result and ground truth. We observe that our framework that uses problem structure and careful normalizations produces
better geometric undistortion and color outputs. (Bottom row) We show another example of further generalization by acquiring an image in a
fountain pool. We see more significant contrasts relative to [14], with clearly better undistortion performance for our method.

comparison to a state-of-the-art method for image to image
translation [14]. This method is similar to our color net
alone but does not generalize well to real data due to the
normalization issues discussed above. It also does not take
advantage of domain knowledge that the transformation is

a warp. Due to these factors, we observe that our method
produces results that are closer to ground truth as compared
to [14]. This is emphasized by the insets, showing better
geometric warp estimation in regions with long edges and
also better color estimates than [14] which produces subtle



checkerboard artifacts.

Although no previous work in the water undistortion liter-
ature attempts the problem of single image blind undistortion,
we note that methods such as [28] estimate a warping field
by assuming the ground truth nondistorted image is known.
In comparison, we do not require the assumption of a tem-
plate, which might not exist in wild settings. Even in lab
settings, acquiring a template requires careful alignment of
images before and after the water surface is agitated. Other
works such as [27] additionally assume high frame rate video
inputs, whereas we require only a single image.

Finally, in Figures 1 and 4, we show example outputs
on an underwater sequence captured in a wild setting. We
use the same network trained on ImageNet images observed
through distortions in a tank, but the test images in this exper-
iment are acquired outdoors at a water fountain. While there
is no available ground truth, it is observed that the network
generalizes quite well to this unseen condition, as reflected
by the undistortion output that preserves edge shapes and
displays plausible colors.

6. Conclusion

We have proposed a novel approach that uses deep learn-
ing to solve the previously unattempted problem of using a
single image to remove distortions due to a refractive inter-
face such as water surface. Since a turbulent water surface
induces distortions that are too complex to be modeled as
parametric or basis transformations, we use domain knowl-
edge to model the distortion as a warp. This is different
from general purpose image to image translation networks,
which does not utilize problem structure. We demonstrate in
experiments that our formulation as an end-to-end trainable
two-stage network that estimates geometry and color, along
with careful consideration of normalizations, leads to better
results and generalization ability. To train our network, we
collected a large scale dataset in lab settings with displayed
images and show that it generalizes to images of real scenes
imaged in different settings including unconstrained ones.
Our work also opens the doors to several directions of fu-
ture research. In particular, we will consider extensions to
recover the shape of dynamic refractive interfaces using our
estimated warps, as well as imaging in participating media
that introduce other interesting distortions such as scattering.
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